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A State-Space Approach to Parametrization of 
Stabilizing Controllers for Nonlinear Systems 

Wei-Min Lu* 

May 10, 1994 

Abstract 

A state-space approach to Youla-parametrization of stabilizing controllers for linear and non- 
linear systems is suggested. The stabilizing controllers (or a class of stabilizing controllers for 
nonlinear systems) are characterized as (linearlnonlinear) fractional transformations of stable 
parameters. The main idea behind this approach is to decompose the output feedback stabi- 
lization problem into state feedback and state estimation problems. The parametrized output 
feedback controllers have separation structures. A separation principle follows from the con- 
struction. This machinery allows the parametrization of stabilizing controllers to be conducted 
directly in state space without using coprime-factorization. 

Keywords: Fractional Transformation, Input-to-State Stability, Lyapunov Technique, Robust 
Control, Separation Principle, Stabilization, State Space, Youla-Parametrization 

1 Introduction 

Yaula-parametrization for linear systems has two properties, i.e., (i) the free parameter set for the 
parametrized controllers is actually a linear space, and (ii) the stabilizing closed loop maps are also 
parametrized, and are affine in the free stable parameters. This fact therefore makes i t  possible t o  
(exactly) solve various robust and optimal control problems (see for example, [43, 9 ,44,  10, 41, 13, 
2, 67 and references therein). As the basic requirement or constraint for feedback control design is 
that  the designed controllers stabilize the feedback system, while Youla-parametrization provides 
a systematic way t o  choose the (optimal) stabilizing controllers. In the Youla-parametrization 
formula, each input-output (110) stabilizing controller can be characterized as a linear fractional 
transformation of some (110) stable parameter. The basic technique used in the derivation is 
coprime factorization. Due t o  the clear connections between the stability notions in both the 110 
description and the state-space description for a linear system, a state-space formula has also been 
derived using the coprime factorization technique [lo, 251, and each internally stabilizing controller 
is characterized as a linear fractional transformation of some internally stable system. 

When nonlinear systems are considered, i t  is expected that they could also enjoy the similar 
controller parametrizations and the properties which the linear parametrized closed-loop systems 
have. I t  is indeed the case for a special class of nonlinear systems [8, 7, 12, 371. However, for a more 
general class of nonlinear systems, the answer is not very straightforward. As far as the controller 
parametrization is concerned, a natural approach is to  analogically use coprime factorization-like 
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technique, although the parametrization formulas for some special cases can be derived without 
explicitly involving coprime factorization (see, e.g., [8, 71). Nontheless, the generalizations of the 
coprime factorization notion for nonlinear systems largely depend on how to define (110) stability 
and  coprimeness of (110) (stable) operators. There have been a rich variety of versions of coprime 
factorization for nonlinear systems, because different stability and/or coprimeness notions have been 
used (cf. [17, 37, 29, 31, 35, 5, 26, 381 and references therein). The controller parametrizations can 
b e  more or less conducted based on these notions of coprime factorization [17,37,35,26]. However, 
unlike in the linear system case, neither the computational implications of these results nor their 
implications in the state space are clear. Some efforts have been made in this direction such that  
t h e  coprime factorization can be conducted in terms of the state-space techniques [29, 30, 31, 381. 
Contrary to  the linear systems, one of the difficulties is that the state space stability notion, i.e., 
asymptotic stability, doesn't imply any 110 stability notion in general. Thence, some concepts, such 
as the notion of input-to-state (11s) stability proposed by Sontag in [29,31], are needed to  insure I/O 
stability by considering asymptotic stability. In particular, in the nice work by Sontag [29, 311, the 
finite 110-gain-like stability notion is used to  carry out the coprime factorization in the state space, 
where a finite I/S-gain-like notion of I/S stability is suggested as a bridge between asymptotic 
stability and I/O stability; it is concluded that if a nonlinear system is smoothly stabilizable, 
then there is a coprime factorization for the system; moreover, this coprime factorization can be 
constructed by using smooth state feedback. Verma and Hunt [38] use the similar technique to  deal 
with the coprime factorization in the context of BIB0 stability with a slightly different version of 
coprimeness, and another version of I/S stability, i.e. the bounded-inputlbounded-state (BIBS) 
stability, is used. It is believed that the potential use of coprime factorization in the nonlinear 
control theory is to parametrize the stabilizing compensator laws (see [29]). So there comes up 
t h e  question: do we really need to use the coprime factorization technique to  get the stabilizing 
controller parametrization? 

The answer to  the above question is YES. In this paper, we derive a parametrization formula 
of stabilizing controllers for time-invariant linear, input-affine nonlinear, and general nonlinear 
control systems directly in the state space without using the coprime factorization. We use a state- 
space technique, which is developed in Doyle et a1 [ll] and is extended in [20] for a more general 
problem, to  deal with the controller parametrization problem. Basically, in this machinery, the 
general problem is decomposed into some simpler output-estimation and state-feedback problems 
b y  a technique of changing variables; the controller parametrization is constructed from the con- 
siderations of the simpler problems by the employment of a separation argument. (A separation 
principle follows from the construction.) In the resulting parametrization formula, the asymptoti- 
cally stabilizing controllers are characterized as fractional transformations of some asymptotically 
stable parameters. From the state-space point of view, a parametrized controller is structured as 
a n  observer which estimates the state of the plant with zero input, a state feedback which uses the 
estimated state, and a free stable parameter. In the linear case, this formula is exactly the Youla- 
parametrization, which characterizes all internally stabilizing time-invariant linear controllers, and 
t h e  parametrized closed-loop maps are affine in the free parameters. In the nonlinear case, in 
general, it just characterizes a class of asymptotically stabilizing controllers which have separation 
structures. This consideration is additionally motivated by some other work in which separation 
structures for some nonlinear feedback systems are confirmed [39,28,4,33,23,18,36,1,21]. Unlike 
linear systems, the parametrized closed-loop maps do not have similar affine-like representation. In 
t h e  nonlinear case, the Lyapunov technique is used to  deal with stability issue, Sontag's machinery 
129, 31, 191 is adopted. 



The rest of this paper is organized as follows. In section 2, the linear case is considered to  
motivate the techniques used in this paper. Parallelly, the input-affine nonlinear system case is 
considered in section 3, the formula of the parametrized input-affine locally stabilizing controllers 
i s  derived. In sections 4, the general nonlinear systems are considered; both local and global 
formulas are proposed. 

Conventions 

R f  = [O,co). As in [16], a function y : R f  -+ R+ with y(0) = 0 is said to be of class IC if i t  is 
continuous and strictly increasing; it is of class IC, if in addition y(s) --t co as s + co. A function 
,O : R f  x R f  + R+ is said to be of class ICL if for each fixed t ,  the mapping P(., t) is of class IC 
and for each s,  ,d(s,t) is decreasing to 0 as t -+ oo. A function is said to be of class  fit is 
continuously differentiable k times; so C0 stands for the class of continuous functions. R'l-t, stands 
for the class of real rational matrix-valued functions analytic in Re(s) > 0. I I . I I  stands for the 
Euclidean norm of vector in some Euclidean space; B, := {x E Rn : llxll < r for some integer n > 0 
and r > 0. IIu11, := ess-sup{IIu(t)ll : t E R f )  for u : Rf+RP. C,[O,cro) is the space of functions 
u : Rf-+RP which are measurable and essentially bounded; L&[O, co) is its extended space [42]. 
For any T 2 0, PT denotes the standard truncation operator and QT := I - PT. The fractional 
transformation of M on Q is denoted as as F1 (M, Q )  [27, 151; and the Redheffer product of Ml and 
M2 is denoted as S(Ml, M2) [27]. 

2 Special Case: Stabilization of Linear Systems 

In this section, we consider the linear case and parametrize all stabilizing linear controllers for a 
linear time-invariant system using the technique by Doyle et al. [ll], which is detailed in [20] for 
a more general problem. The aim of this section is to motivate the techniques for the nonlinear 
stabilization problems. 

2.1 Problem Statement 

The basic block diagram is as follows: 

where GL is the plant and has the following realization: 

and K is the controller to be designed. We need to find a linear time-invariant output feedback 

ii := [ I  such that the closed-loop system, denoted as F1(GL, h), is stable. 



It is known that a controller stabilizes GL if and only if it stabilizes Go := 

tha t  Go is stabilizable and detectable, then there exist a state-feedback matrix F such that the 
s tate  feedback system 2 = (A + BF)x  is stable, and an output-injection matrix L such that the 
output injection system x = (A + LC)x is stable. It is further assumed that the feedback structure 
is well-posed, thus I - DD is invertible. It is assumed that D = 0 without loss of generality [ll, 201. 

The main results in this section are as follows. 

a The stabilizing controller Ir' is parametrized as a linear fractional transformation on some 
stable parameter Q ,  i.e., K = F,(J, Q )  for some linear time-invariant system J, and Q E 
RX, . 

The closed loop map from w to z can be represented as T,, = Tll + TI2QTz1 for some stable 
Tll, T12 and T13. 

2.2 Tools: State Feedback and Output Injection 

The  construction of parametrization given in the next subsection involves the reduction of the 
original output feedback problem to some simpler problems. These problems are considered to the 
required extent in this subsection. To this end, we have the following definition. 

Definition 2.1 Two controllers K and K' for system G are equivalent i f  their corresponding closed 
loop transfer matrices are identical, i.e. Fl(G, K )  = Fl(G, K') .  

We first examine the stabilization problem when the state x and the input w are fully available 
t o  the control. In this case, it is said that the system structure provides full information (FI) (cf. 
[ l l ] ) .  The FI  structure is 

The stabilizability of Go implies that there exists a static feedback matrix F such that A + B F  
is stable. 

Proposition 2.1 Let F  be a constant matrix such that A + BF is stable. Then every stabilizing 
controller for the FI system (2) is equivalent to one of the controllers in  the following parametrized 
se t  K F I :  

Dually, a system structure that the control is directly injected to state and regulated output z 
is considered. It is called full control (FC) (cf .  [Ill): 



Proposition 2.2 Let L be a constant matrix such that A+LC is stable. Then the set of equivalence 
classes of all stabilizing controllers for FC system (3) can be parametrized as 

Next, consider a special output feedback structure, which is called output estimation (OE) (cf .  
[l I]), defined by 

It is assumed that A - BC1 is stable. OE system is equivalent to  FC system in the following sense. 

Lemma 2.3 Consider F C  and O E  structures (3) and (4). Then (i) GOE = GFC 0 B . I: 1 
L J 

(ii) GFc = S(GOE, PoE), where POE = 

Therefore, if I I F C  stabilizes GFC, then KOE := Fl(POE, KFC) stabilizes GoE. Furthermore, 

~ ( G F c ,  KFC) = -F(S(GOE, PoE), I ~ F c )  = F~(GoE,  ~ ( P o E ,  I~Fc)) .  

Thus, the class of equivalent stabilizing controllers can be characterized as 

with 

Since if [ 6 ] t KFC is given, then ~ ( P O E ,  [ i  1) =FI(JoE,Q)-  

In fact, we have the following result [20]: 

Proposition 2.4 The O E  controller set KoE defined by (5) characterizes all stabilizing controllers 
for the O E  system (4). 



2.3 Stabilizing Controller Parametrization 

Consider system of GL (1) with D = 0. Since ( A ,  B) is stabilizable, there is a constant matrix F 
such that A + BF is stable. Therefore, 1 F 0 is a special FI stabilizing controller. Now define 

a new system (by changing variables) 

It is clear that a controller stabilizes GL if and only if it stabilizes Gtmp. However, GtmP is of the 
OE structure with A + BF being stable, so the stabilizing controller can be obtained in terms of 
corresponding FC problem. Since (C, A)  is assumed to be detectable, there exists a L such that 
A + LC is stable. By Proposition 2.4, all controllers stabilizing Gtmp are given by K = 3;(J, Q ) ,  
where 

Therefore, by Proposition 2.4 and the inversion formula for a linear fractional transformation 
[15, Lemma 2.71, we have the following statement. 

Theorem 2.5 Consider the linear system GL. Let F and L be such that A + LC and A + BF 
are stable, then all controllers stabilize G can be parametrized as Fl(J ,  Q),  where J is given by 
(6), Q E Rl-tFt,. In  addition, given any stabilizing controller K for GL, it can be parametrized as 
K = F,( J, Q)  with Q = .F;(S, K )  E Rl-t,, where 

It is observed that the central controller for this parametrization, i.e., the parametrized controller 
with the parameter Q = 0, is an observer-based controller, and the observer is as follows 

where 2 is the estimated state x of the original system. Therefore, a parametrized controller has 
some separation structure, and the closed loop system is structured as follows 



Next, consider the closed loop map which is also parametrized as 

Tzw = Fl(G, K )  = E ( G ,  4(J, Q ) )  =: &(T, Q )  
We have the following theorem about the structures of the closed loop maps, whose proof is straight- 
forward and is omitted. 

Theorem 2.6 Let the state feedback and output injection matrices F abd L are chosen as in the 
previous theorem. Then the closed loop maps are parametrized as Tzw = Fl(T,  Q )  with 

and Q  E Rl-t, . Moreover, T,, is aJgine in  Q ,  i.e., 

Tzw = TI, -I- T12QT21 

3 Stabilization of Input- Affine Nonlinear Systerns 

From now on, we shall deal with nonlinear systems. We first consider a simple class of nonlinear 
systems, i.e., the input-affine systems, in this section; the results can be extended to  handle a 
broader class of systems, and the extension is the main issue of the next section. Basically, the 
techniques t o  be used are demonstrated in the last section. In this section, it is examined to  what 
extent the treatments and results for linear systems in the last section can be extended to  handle 
the input-affine nonlinear systems. All results are local, unless otherwise noted. 

3.1 Preliminaries: Stabilizability and Detectability 

The reader is referred to  [16] for the basic Lyapunov stability theory (see also the survey article 
[32]). Consider a nonlinear system with a input-affine realization: 



where x E Rn is the state vector, u E RP and y E RQ are the input and output vectors, respectively. 
We  will assume f ,g ,  h E C 2 ,  and f ( 0 )  = 0 ,  h ( 0 )  = 0. Therefore, 0 E Rn is an equilibrium of both 
systems with u = 0. 

Definition 3.1 ( i)  The dynamical system G (10) (or [ f  ( x ) , g ( x ) ] )  is  said to be locally smoothly (or 
exponentially) stabilizable i f  there is a C 2  function F : Rn -+ RP such that 2 = f ( x )  + g ( x ) F ( z )  is  
locally asymptotically (or exponentially) stable about x = 0 .  

(ii) The dynamical system G (10) (or [ h ( x ) , g ( x ) ] )  is said to be (locally) smoothly (or ex- 
ponentially) detectable i f  there is a C 2  matrix-valued function L : Rn -+ RnXq such that 2 = 
f ( x )  + L ( x ) h ( x )  is (locally) asymptotically (or exponentially) stable about x = 0.  

The global versions of stabilizability and detectability can be defined similarly. The definition 
of stabilizability is quite standard. The detectability notion is defined in terms of output injection, 
which is analogical to the one in the linear case. However, the output injection depends on the state 
variable. This consideration is just of technical interests, since the implication for the detectability 
notion is that if the system is locally exponentially detectable, then there exists a local state observer 
for the original system, and the observer can be constructed by the output injection. 

Rernark 3.1 The smooth stabilizability and the smooth detectability can be characterized i n  terms 
of  Lyapunov functions. For instance, from the inverse Lyapunov theorem, it follows that system G 
(10) is (locally) smoothly stabilizable, i f  and only if there are a (locally) C 3  positive definite function 
(i.e., Lyapunov function for the closed loop system) V : Rn -+ Rt, a smooth function F : Rn i RP 
with F ( 0 )  = 0,  and C 2  functions y l ,  y2,  y3 of class K such that: 

for x E t?, with some r > 0.  

Moreover, system (10) is locally exponentially stabilizable i f  and only i f  i ts linearized system 
around 0 is stabilixable, it is also noted that besides conditions (11) and (IZ), the necessary and 
suflcient  conditions for local exponential stabilizability additionally require that 

Y ~ ( s )  lim - E ( 0 ,  oo). 
s-0 s2 

To conclude the review, we give a Hamilton-Jacobi Inequality (HJI) characterization about 
stabilizability and detectability. 

Proposition 3.2 Consider the system G (10). 

(i) It  is  (locally) smoothly stabilizable, i f  there exists a (locally) C 3  positive deJinite function 
V : Rn -+ R+ with yl(11x11) 5 V ( x )  < r2(llxII) for some C 2  functions r l ,  y2 of class K: such that the 
following HJI  is  satisfied for x E t?, with some r > 0.  

avT with 73 being of class K .  Moreover, F ( x )  = -gT(x)+ is such a stabilizing state feedback 
controller. 



(ii) It is (locally) snzoothly detectable, i f  there exists a (locally) C 3  positive definite function 
U : Rn t R+ with al(llxll) < U ( x )  < a2(11x(1) for some C 2  functions cl,  a2 of class K: such that, 
for x E Br with some r 3 0 ,  the following HJI  is satisfied. 

with a3 being of class I C ,  and there is a C 2  matrix-valued function L ( x )  such that 

Moreover, u = L ( x ) y  is such a stabilizing output injection. 

The proof is straightforward, so it is omitted. It is noted that the above characterizations are 
just sufficient in general (, system x = x4+x2u is such a counter-example for stabilizability condition 
(14)). However, they are also necessary for linear systems. Moreover, we have the following result 
about exponentially stability and detectability. 

Proposition 3.3 Consider the system G (10). 

( i )  It is  locally exponentially stabilizable i f  and only i f  there exists a (locally) C 3  positive definite 
function V : Rn t R+ with yl(llxll) 5 V ( x )  5 y2(11x11) for some C 2  functions y l ,  y2 of class K: such 
that  the HJI  (14) is satisfied for x E Br with some r > 0 and y3 being of class K and satisfying 
l i m o  E ( 0  ) Moreover, F ( x )  = - g T ( x )  "VTO is a locally exponentially stabilizing state 
feedback controller. 

(ii) It is  locally exponentially detectable if and only if there are a (locally) C 3  positive definite 
function U : Rn t R+ with u l ( l l x ( ( )  < U ( x )  < c2(I (xI ( )  for some C 2  functions u l ,  a2  of class K 
such that, for x E t?, with some r > 0 ,  the HJI (15) is satisfied with a3 being of class K and 
l o  E ( 0 )  Moreover, u = L ( x ) y  with L ( x )  being a solution to (16) is such a locally 
exponentially stabilizing output injection. 

Proof The sufficiency is straightforward. The necessity follows from the fact that the linearized 
system of G is stabilizable and detectable. In fact, consider part (i), from [24], it follows that there 
exists a positive definite matrix P such that, 

with A = E(o) ,  B = g(0) .  Now define V ( x )  = xTP- 'x ,  it follows that V locally satisfies HJI ( 1 4 )  
with some y3 being of class K: and satisfying (13). Similar argument applies to part (ii). 

3.2 Controller Parametrization Problem Statement 

In this section, the standard feedback configuration is as follows. 



The plant has the following input-affine realization 

k = f (x) -t g1(x)w t g(x)u 
z = hl(x) + kll(x)w + k 1 2 ( ~ ) ~  
y = h(x) + L21(x)w + k(x)u 

where x E Rn is the state vector, u E Rp and w E RPl are input vectors, and y E RQ and z E Rq1 
are output vectors, respectively. We will assume f ,gl ,g ,  hl, h, kij, k E C2 ,  and f (0) = 0, hl(0) = 
0, h(0) = 0. Therefore, 0 E Rn is an equilibrium of the system with w = 0 and u = 0. It is known 
that  a controller locally stabilizes system Gaf with w = 0 if and only if it stabilizes the following 
system: 

I n  the following discussion, although we could guess the controller parametrization formula from 
the  linear case, prove it directly using Lyapunov theory under some additional conditions, and 
develop a theory without involving the input w and output z, the development would be less 
appealing for the following reasons: (i) The alternative approach provides a constructive proof; (ii) 
The  techniques used in the linear case could fail some where, the parallel treatments to  the linear 
case would reveal this; (iii) It is natural to  take the extra input w and output z into account t o  
reveal some 110 properties for nonlinear systems. For example, with this (110) consideration, we 
shall see that,  unlike in the linear case, the parametrized I/O maps are not affine in the parameters. 

In this section, we assume that the system G is locally smoothly stabilizable and locally smoothly 
detectable. We are interested in finding a time-invariant controller u = Ky which Bas the following 
input-affine realization: 

with a ,  b, c ,  d E C 2  and a(0) = 0, c(0) = 0, such that the closed loop system Fl(Gaj,  Er') is asymp- 
totically stable with w = 0. It is assumed that I - L(x)d(5) is invertible to guarantee the well 
posedness of the feedback system. We shall assume k(x) = 0 for simplicity. 

We are interested in the following problem: To what extent, can the parametrization 
formula for linear systems be extended to handle the input-affine nonlinear systems? 
Actually, in this section, we shall parametrize a class of input-affine time invariant controllers 
which locally asymptotically stabilize G such that the parametrized controllers are characterized as 
fractional transformation of some locally stable parameters. The following definition gives a class 
SP, of locally st able nonlinear time-invariant parameters: 

Definition 3.2 A class SPaf of input-afine nonlinear systems is so defined that each system i n  
SPaf has a input-afine realization like (18) and is locally asymptotically stable around 0 with zero 
input. 

So if Q E Spat, by inverse Lyapunov theorem, it admits a C3 Lyapunov function VQ(.). 

Definition 3.3 Consider a system G, two controllers K and K' are equivalent if their correspond- 
ing closed loop map are identical for zero initial conditions, i.e. Fl(G,  11') = Ff(G,  K'), written as 
K 2 I<'. 



3.3 State-Feedback and Output-Injection 

As  in the linear case, the construction of controller parametrization is accomplished by decom- 
posing the original output feedback problem into some simpler problems, which are known as full 
information (FI) and full control (FC) problems. In this subsection, those problems are considered. 

We first deal with full information (FI) system, in which case both state and disturbance w are 
measured. 

It is assumed that [f(x),g(x)] is smoothly stabilizable, therefore, there exists a C 2  function F 
such that u = F(x)  is a smooth stabilizing state feedback. Since both state x and disturbance w 
are  available t o  the control input u, the control law u = F(x) + Q w  with Q E SPaf  is legal and it  
stabilizes the FI  structure (19). Moreover, we have the following result about the parametrization 
of stabilizing controllers for FI structure. 

Proposition 3.4 Let F : Rn -+ RP with F(0) = 0 be a smooth function such that 2 = f(x) + 
g(x)F(x) has an  asymptotically stable equilibrium at x = 0. Then every input-afine stabilizing 
controller for FI structure (19) is equivalent to one of the controllers in  the parametrized set as 
follows 

Proof It can be easily verified that the control law u = F(x)  + $w with Q E SPaf  stabilizes the 
F I  structure by Vidyasagar's stability theorem for cascade systems [40]. Now, given a stabilizing 
controller KFI, we need to  show that there is a Q E SPaf  such that KFI 2 1 F(.) Q I. TO this 

end, make a change of control variable as v = u - F(x),  where x denotes the state of the system 
GFI, then the feedback system with the controller ISFI has the following block diagram: 

where 



Let Q be the map from w to v; it belongs to Spa by asymptotic stability of the closed loop system. 

Then u = F ( x )  + v = F ( x )  + Qw. It follows that Fl(GFr, I i F I )  = F'(GFI, [ F( . )  Q 1 )  provided 

tha t  the initial states are zero, so I iFI  E [ F ( . )  Q 1 .  

Remark 3.5 If the system [ f ( x ) , g ( x ) ]  is globally smoothly stabilizable, then there is a smooth 
FIlo : Rn -+ RP, such that the system 

with input v is I/S stable [29] (see Definition 4.4). Then by Sontag's theory [29] and the argument 
used i n  the above proof, it can be shown that every input-afine globally stabilizing controller is 
equivalent to ICFI = F I I 0 ( x )  + Qw with Q E SPaf being globally asymptotically stable about 0 .  

As in the linear case, the stabilization problem where the control is directly injected to the state 
is considered next. Such structure is called full control (FC): 

It is assumed that [ h ( x ) ,  f ( x ) ]  is smoothly detectable. Thus, there exists a C2 smooth function 

L : Rn -+ RnXq such that u = [ ] y is a smooth stabilizing output injection. The following 

statement follows easily. 

Proposition 3.6 Let L ( - )  be a smooth matrix function such that 2 = f ( x )  + L ( x ) h ( x )  has an  
asymptotically stable equilibrium at x = 0. Then the following parametrized set characterizes a 
class of stabilizing controllers for FC structure (20). 

It is noted that the controller is also allowed to depend on the state x .  This consideration is 
mainly of technical interests as we will see soon. 

Remark 3.7 If the system [ h ( x ) ,  f ( x ) ]  is globally smoothly detectable, let L ( . )  be a smooth matrix 
function such that x = f ( x )  + L ( x ) h ( x )  has a globally asymptotically stable equilibrium at x = 0.  - 
Then  from Sontag's argument [29], it follows that I b c  = 1 1 y with Q E SP,, being 1/27 

stable globally stabilizes system G F C .  

3.4 Locally Stabilizing Controller Parametrization 

The main results of this section are given in this subsection. It will be shown that a class of 
input-affine (locally) stabilizing controllers are parametrized as fractional transformation of the pa- 
rameters in ST',,; the structures of the parametrized closed-loop maps are also examined. However, 
unlike linear systems, the closed loop maps are not affine in Q. 



3.4.1 Controller Parametr izat ion 

We now consider the general output feedback stabilization problem. The solutions to this problem 
a re  based on the results in the last subsection. The nonlinear time-invariant plant is an input-affine 
system Gaf (17) with LZ2(x) = 0. It is assumed that [f(x),g(x)] is locally smoothly stabilizable 
and  [h(x), f(x)] is locally smoothly detectable. So there are two C3 positive definite functions 
V, U : Rn -+ R f ,  two C 2  functions F : Rn -+ RP, L : Rn -+ RnX4, and two C 2  functions y and a of 
class K, such that: 

for x E B, with some r > 0. 
As in the linear case, make a change of variable, i.e., let v = u - F(x) ,  then we get the following 

system 

which has a constraint that k = f(x) + g(x)F(x) is asymptotically stable at z = 0. As far as the 
local asymptotic stabilization is concerned, u = Ky stabilizes GOE if and only if it stabilizes Gaf. 
The  above structure of GOE is known as output estimation (OE). 

Unlike the linear case, the two structures FC, which is discussed in the last subsection, and OE 
are not equivalent in the strict sense if it is just assumed that [h(x), f(x)] is smoothly detectable. 
But there are indeed some close relations between this two structures. We can therefore take 
advantage of the FC results to deal with OE problem as in the linear case. Analogically, define a 
system PoE, 

Intuitively, motivated by the linear treatment, we would expect that GFC = S(GOE, PoE). However, 
this conjecture generally fails in this case, although the internal dynamics for both systems with zero 
inputs are identical if suitable initial conditions are chosen. As we only consider local stabilization, 
there arises a natural question: can we still use the FC local controllers to recover the OE controllers 
by KOE = Fl(POE, I!FC) as in the linear case? Or can the system Fl(GoE, KOE) remain (locally) 
stable? The answer is positive if some stronger assumption about the detectability is made. 

In this case, it is additionally assumed that [h(x), f (x)] is locally exponentially detectable. 
Therefore, there are a C3 locally positive definite function U : IWn -+ R+, a locally smooth function 
L : Rn -+ RP, and a C 2  function a of class K such that (22) is satisfied, and in addition, 

a3(s) lim - E (0, CQ). 
8-0 s2 

We have the following result about the stabilization, where the controller is recovered by K = 

Fl (PoE, KFC) with IGC = 



Theorem 3.8 Consider the system (1 7). Suppose that it is locally smoothly stabilizable and locally 
exponentially detectable. Let F( . )  and L(.)  be determined by the above characterizations (21), (22), 
and  (24). Then the controller 

(locally) asymptotically stabilizes system Gaf around 0 .  
Moreover, the controller parametrized as u = 3 , ( M ,  Q ) y  with 

for all Q E SPaf  also (locally) asymptotically stabilizes system G around 0 .  

We use Lyapunov technique to prove the above theorem. First, we have the following observa- 
tion. 

Lemma 3.9 Let U ( x )  > 0 and L ( x )  be taken from the above theorem, and let x ,  2 be states of 
systems GOE and KoE , e = 5 - x .  Define 

T h e n  for all e ,  x E B, with some r > 0,  there exists a function n of class K: with 

4 s )  lim - E ( 0 ,  oo), 
s-0 s2 

such that H E ( e ,  2 )  + ~ ( l l e l l )  5 0.  

Proof Recall that 

for a C 2  function a of Class I C .  The conclusion follows by observing that the Hessian matrix of 
3 t E ( e ,  5 )  with respect to  e at 0 can be arbitrarily close to  the one of 'Flor(U, L ,  e )  with respect t o  e 
a t  0 if 5 E B, for r small enough. In this case, the Hessian matrix of 'FIE(e, 5 )  is negative definite. 
The  conclusion follows. 

The following lemma, which is from [31, Corollary 5.11, is used in the proof. 

Lemma 3.10 Suppose system li. = f ( x ,  u )  with f E C0 has an asymptotically stable equilibrium 
at 0 when u = 0.  Then there exists a continuous function a : R++R+ with a ( s )  f. 0 i f  s # 0 ,  
such that given a number r > 0 there is r ,  > 0,  for each ro E ( 0 ,  r,), if initial state x ( 0 )  E B,., 
and u E L,[O, oo) for which IIull, 5 a ( r o )  and u(t)--+0 as t--too, then the solution x ( t )  exists with 
Ilx(t)ll < r for all t E R+, and it satisfies x(t)+O as t+m.  

Next, we give a proof of the stabilization result which closely follows the treatments of Sontag 
in [31]. 



Proof (Theorem 3.8) Only the latter statement that u = .Fl(M, Q) with & E SPaf locally 
stabilizes system (17) is proved, as the central controller (25) is obtained by letting & = 0. 

Consider 3;(Gaf, &(M, Q)) for Q E SP which has the following realization (uo = &yo): 

S o  the dynamics of closed loop system with w = 0 is as follows, 

Let e = Z - x, the reorganization of the system yields 

E = q(e, 2) + (g(e + 2) - g(x))(c(l) + d(t)(-h(e + x + h(x))) 
i = ~ ( 0  + b(S)(-h(e + 2) + h(x)) 
2 = f (x) + g(x)F(e + x) + g(x)(c(l) + d(l)(-h(e + x + h(x))) 

where q is a function defined as 

q(e, x) := f (e + 2) - f (x) + L(x + e)(e + h(x) - h(x)) + (g(e + X)  - g(x))F(e + X) 

The proof of stability of the closed-loop system is divided into the following three steps. 

Step 1. We first prove that e(t)+O as t--.m if e(0) E B,, , [ E Brq and x E B,, for some ro,  r ,  r, > 0. 
Consider the e-subsystem 

Take the U as given in the theorem, it was shown in Lemma 3.9 that there exists r > 0, for 
x E B,,e E B,, 

where a is a function of of class K with lim.,o E (0, m).  Therefore, there exists r, > 0, and 
for all [ E BTq, there is a function no of class K such that for all e, x E B,. with updated r > 0, 

au (e>  
-a(Ilell) + a,(g(e + X) - g(x))(c(F) + d(E)(-h(e + x + h(x))) 5 -no(llell)- 

Thus, for all e ,x  E B,, 

Therefore, there is a function Po of class KL such that 

Ile(t>ll 5 Po(lle(o>ll l t )  



for all t E R+,  e(0) E B,, c Rn for some ro  > 0 such that Po(ro, 0) < r ,  and x E B,, ( E Brq. Thus, 
e(t)+O uniformly on x E B,, [ E B,, as t+oo if e(0) E B,, . Without loss of generality, it is assumed 
tha t  r and r, are chosen such that (28) holds for all t E R+, e(0) E B,,, and x E B,., ( E Rq, where 
B,. is the closure of B,. 

Step 2. We will next show [(t)+O as t+oo for [(O) E B,, , x(0) E B,,, and x(t) E B,. for some 
qo, ro,  r > 0. Consider the [-subsystem 

(with e as an input). If e = 0, then the system becomes ( = a([) which is locally stable. By 
Lemma 3.10, there exists a continuous function a with a(s) # 0 if s # 0, for the given r, > 0, there 
is qo > 0 with qo < r, such that if Ile(t)ll < a(qO) with e(t)+O as t + w ,  then ll((t)llm < rq and 
x(t)+O as t+w.  Therefore, if the above conditions for e(t) satisfying (28) are satisfied, then i t  is 
done. 

We now verify that e(t) satisfying (28) has the required properties for some suitable ro > 0. 
We first show that E(t) satisfying (29) also satisfies (([(t)llm < r, for all J(0) E B,,, and e evolving 
according to (27) with e(0) E B,, for some ro > 0 and x E B,. In fact, ro  is adjusted such that 
Po(ro, 0) 5 a(qo). Suppose there is a time T such that II[(T)II 2 rq with some [(O) E B,, (here 
T is chosen to be the minimal such time). As II[(t)ll < rq for t E [O, TI, then for all x(t) E B,, 
(28) is satisfied for t E [O,T], i.e., Ile(t)ll < P,,(lle(O)ll , t )  < PO(lle(O)ll, 0) < a(q0) for t E [0, TI. By 
the  previous statement and the causality of system (29), we have [(t) E B,, for t E [O,T] which 
contradicts the assumption 11[(T)II 2 r,. Therefore, ((t) E Brq for t E [0, m). Thence, if e(0) E B,., 
and 1 1 ~ 1 1 ~  < r then Ile(t)ll I Po(lle(O)ll , t )  5 Po(lle(O)ll ,O) < ~ ( q o )  for t E [O, w) .  Therefore, by 
Lemma 3.10, it is concluded that [(t)+O as t+m for ((0) E B,, , x(0) E B,,, and x(t) E B, for 
some qo,ro,r > 0. 

Step 3. Finally, we prove x(t)+O if x(0), e(0) E B,, and [(O) E qo. Consider the x-subsystem 

2 = f (x) + g(x)F(e + x) + g(x)(c([) + d([)(-h(e + X + h(x))) (30) 

Note that if (e, [) = 0, then the system becomes i = f (x) + g(x)F(x) which is asymptotically 
stable by assumption. It is also known from the above proofs that if ((0) E B,, , x(0) E B,,, and 
x(t)  E B, for some qo,ro,r  > 0, then e(t)+O and ((t)+O as t+w.  By the same argument as in 
Step 2, it is shown that (Ix(t)JI < r and x(t)+O if x(O),e(O) E B,, and [(O) E qo for some suitably 
adjusted ro,  q0 > 0. 

This completes the proof. 

3.4.2 Separation Structures of Parametrized Controllers 

The parametrized controller has a separation structure, and it is an observer-based controller. The 
observer is as follows. 

Oaf : 
i = f (Z) + g(Z)F(Z) + L(Z)(h(Z) - Y) 
ij = h(Z) 

The  estimated state is Z and Z(t) - x(t)+O as t+oo for w = 0 because of the locally exponentially 
stability. The feedback system with a parametrized controller is thus structured as the following 
diagram. 



3.5 Structures of Closed-Loop Maps 

In this subsection, we will consider structures of the closed maps with the parametrized controllers. 
We first have the following definition of an I/O property. 

Definition 3.4 Consider an I/O operator P : Ck[O, oo)-+L&[O, oo). It is  said to be locally I /O 
stable if there are kI, ko > 0 such that for all w E L,[O,oo) with IIwllW kl, then z := Pw E 
Cw[O, m )  and llzlloo i ko .  

We first have the following lemma about the relation between asymptotic stability and 1/0 
stability for a nonlinear system, which follows from [31, Corollary 5.11 (see also [38, Lemma 4.11). 

Lemma 3.11 Consider the following system 

with f,,g,, h,, kc E C O .  It is assumed that x = f,(x) is locally asymptotically stable around 0. Then 
given E > 0, there is a S > 0, such that for all 1 1 ~ 1 1 ,  5 6, 11z11, 5 E. 

Next, consider the closed-loop map from w to z which is parametrized as follows, 

Tzw = Ff(Gaf Fl(M, Q)) = Fl(T, Q)7 Q E SPaf 

where T has the following realization. 

Now consider the structure of 1/0 map T which has zero initial conditions x(0) = 0 and 
Z(0) = 0, the closed-loop map T,, is locally 1/0 stable and parametrized as follows: 



where Tl  and T 2 ( Q )  are locally 110 maps, and Tl  defines the map from [ ] to z as follows, 

x = f ( x )  + g(x)F(Z)  + s1(x)w + g(x>uo 
x  = f ( 5 )  + g(5)F(5)  + L(Z)(h(Z)  - h ( x ) )  - L(5)k21(x>w + S ( ~ ) U O  

z = h l ( x )  + k lz (x )F(5)  + k l l (x )w + k 1 2 ( ~ ) ~ 0  

and T 2 ( Q )  is the map from w to uo defined as follows. 

2 = f  ( x )  + g(x )F(5 )  + gl(x)w + g(x )Q(h ( z )  - h ( x )  + k 2 1 ( ~ ) ~ )  
i = f ( 5 )  + g(P)F(Z) + L(Z)(h(Z)  - h ( x )  - k21(x)w) + g($)&(h(Z)  - h ( x )  kzi(x>w) 
uo = Q ( h ( 5 )  - h ( ~ )  + k21(x)w) 

Both Tl  and T 2 ( Q )  are locally asymptotically stable with zero inputs as guaranteed from the 
development, then they are locally I/O stable by Lemma 3.11. 

It is noted that that unlike in the linear case, the closed loop maps have no affine-like 
relation with Q for nonlinear systems in general. To conclude the I/O discussion, we 
consider an example from [8]. The parametrization of the closed-loop map is used in the nonlinear 
'Id,-optimal controller design in [12]. 

An Example 

Consider a feedback system with the following block diagram, 

w2 

P is a (locally) I/O stable plant. we need to parametrize a class of controllers C such that the 

resulting maps from [ ] to [ '; ] are (localiy) 110 stable. This problem is considered in [XI in 

an I/O setting. In the following, we consider it in the state space framework. 

Suppose system P has the following input-affine realization. 

with fp ,gp ,  hp E C 2 ;  and x = f p ( x )  is locally exponentially stable around 0. Define w = 

[ z: ] and z = [ ; 1, then the system block diagram is redrawn as follows. 



with 

As P is assumed to be locally exponentially stable around 0, the state feedback and output injection 
can be chosen as F = 0 and L = 0, respectively. Then by Theorem 3.8, a class of controllers C can 
be represented as C = Fl(Mp, Q), with 

with Q E SPaj. Next, we examine the structure of the parametrized controller. 

Lemma 3.12 The controller C = Fl(Mp, Q) has structure C = Q(I - PQ)-'. 

Proof let uo = Q yo, then 

with 5(O) = 0. Let yo = hp(5) + e. Since u = Q yo, it is sufficient to show yo = ( I  - PQ)-le, or 
e = ( I  - P&)yo. 

In fact, consider yu := ( I  - PQ)yo, it can be written as 

Now replace yo := hp(5) + e, then we have 

Now as x(0) = 0, by the uniqueness of the solution to differential equations, we have x(t) = Z(t). 
Then y, = e, i.e., e = ( I  - PQ)yo. 

We finally examine the structure of the closed loop map from wl to y provided w2 = 0. 

Lemma 3.13 The closed loop map from wl to y with w2 = 0 is parametrized as Taw, = P Q ,  

Proof Let w2 = 0. then the closed loop map is parametrized as T,,, = Fl(T,  Q) where T is given 
in (31): 



x(0) = Z(0) = 0, and uo = Q y o .  Therefore, 

with 4 0 )  = Z(0) = 0. Therefore, Z(t) = x(t) for all t 2 0, then T,,, = P Q  which is locally I/O 
stable. 

The interested reader can compare the above results with those in [8]. 

4 Stabilization of General Nonlinear Systems 

In the last section, we have considered the input-affine nonlinear systems, which have nice struc- 
tures close to  linear systems. The stabilizing control laws and stabilizing controller parametriza- 
tions are constructed based on observers. In this section, we consider the stabilizing controller 
parametrizations of a more general class of nonlinear systems whose structures are not required to  
be input-affine. It will be verified that a set of stabilizing controllers for system G will be charac- 
terized as fractional transformations of some stabilizing parameters, i.e., F l ( M ,  Q ) .  Motivated by 
the previous results on input-affine systems, the parametrized controllers have a separation struc- 
ture. Therefore, the starting point for further consideration is that there must exist observers for 
the concerned class of systems. Therefore, the feedback systems will have the following structure, 
where O denotes the observer. 

I 

4.1 Local Controller Parametrization 

The plant considered in this subsection is 



where f(0,O) = 0, h(0) = 0, f ,  h E CO; x, u and y are assumed to  have dimensions n, p, and q, 
respectively. Clearly, the origin 0 is an equilibrium of the system with u = 0. In this subsection, the 
locally stabilizing controller parametrization for system G, (32) is considered. The parametrized 
controllers are represented as fractional transformations of some locally stable parameters. We first 
define the following a class of the local stable parameters. 

Definition 4.1 The class SPlo, of time-invariant nonlinear systems is so defined that each member 
has the following realization. 

for  some fQ, hQ E CO, and is locally asymptotically stable at 0 with u = 0. 

So  if Q E SPlo,, by inverse Lyapunov theorem, it admits a locally C1 Lyapunov function VQ(.) 

Next, the notions of stabilizability and detectability for system G, (32) are examine. 

Definition 4.2 G, (32) is locally stabilizable around x = 0 if there is a continuous function F : 
Rn+RP with F(0) = 0 such that 2 = f(x,  F(x)) is locally asymptotically stable around x = 0. 

The following technical definition is from 1391. 

Definition 4.3 System Gg is said to be locally weakly detectuble, iJ there are a C0 mapping f o  : 
Rn x Rq x RP+Rn with fo (O ,  0,O) = 0, a C1 locally positive definite function W : Rn x Rn+R+, 
and  functions & ,  42, d3 of class K: such that 

for  all u E B,, and x, 2 E B, for some r,, r > 0. 

If the system G, is (locally) weakly detectable, standard arguments show that there is a function 
Po of class KC such that the error state e = 2 - x evolves according to  the following dynamics. 

satisfies 

Ile(t>ll 5 Po(lle(0)ll , t >  (37) 

for all t E R+, x E B,, and u E Bru. Therefore, 2-+x as t+m,  i.e., the system 2 = fo(2, h(x),u) is 
a local observer for system G,. 

Remark 4.1 A local observer for the general system (32) with f ,  h E C2 can be constructed if there 
is a matrix-valued function L(x) such that 2 = f (x, 0) + L(x)h(x) is locally exponentially stable. In  
fact, it can be shown that 2 = fo($ ,  y, u) with 

is such a local observer. It  is exactly the case for the observers constructed for the input-aygine 
systems in the last section. 



We have the following theorem about the local controller parametrization for system (32). 

Theorem 4.2 Suppose system G, (32) is locally asymptotically stabilizable and locally weakly de- 
tectable. If in addition, there is a C0  function F : R n t R P  such that li. = f (x ,  F(x))  is locally 
asymptotically stable at 0, and the function fo : Rn x Rq x R p t R n  is chosen as in the defini- 
tion 4.3, then the controller parametrized as u = Ff(n/r,, Q) y with Mi given by 

for all Q E SPlo, also locally asymptotically stabilizes system G, around 0. 

The following proof basically follows the proof of Theorem 3.8, we just give a sketch here. 

Proof Assume uo = &yo for & E SPlo, with the following realization 

The dynamics of the closed loop system is described by 

Take e := 5 - x as the error state, then equivalently, the closed loop system can be represented 
with the state x, = [eT tT xTIT as 

6 = fo(e + 2, h(x), u) - f (x, u) 
8 = a((, h(x + e) - h(x)) 
x = f (x, F(x + e) + 45, h(x + e) - h(x))) 

where u = F(x + e) + c((, h(x + e) - h(x)). 

We first prove that e ( t ) t O  and [(t)+O as t+oo if (e(O), ((0)) E B,, x B,, for some ro,  qo > 0. 

Consider the e-subsystem. By the detectability, there is a function Po of class ICE such that 

for all t E R+, e(0) E B,., C Rn and ,Oo(ro, 0) < r ,  x E B, c Rn,  and u E Bru for some TO, r ,  r, > 0. 
So e(t)+O as t+m,  for all e(0) E KO.  As u = F(x  + e) + c((, h(x + e) - h(x)) is continuous function 
of e, 5, and x, it can be assumed that u E Bru if e, x E B,. and ( E Brq for some r, > 0. 

Next, consider the (-subsystem 8 = a((, h(x + e) - h(x)). If e = 0, then it becomes 8 = a((, 0) 
which is locally asymptotically stable. By Lemma 3.10, there exists a continuous function a with 
a(s)  # 0 if s # 0, for the given r, > 0, there is qo > 0 with qo < r, such that if Ile(t)ll < a(qO) 
with e ( t ) tO  as t - tm,  then II((t)ll < rq and x(t)+O as t-too. However, from the similar arguments 
as in the proof of Theorem 3.8 (Step 2), it follows that e(t), which satisfies (38) also satisfies the 
above conditions for ((0) E a,,, e(0) E B,,, and x(t) E B, for some qo, ro,  r > 0. Therefore, by 
Lemma 3.10, it is concluded that ((t)+O as t+oo. 



T h e  proof o f  this theorem is completed b y  showing that x(t)+O as t+m i f  x (0 ) ,  e (0 )  E B,, 
and ( ( 0 )  E q0 for some suitably adjusted ro ,  q0 > 0 ,  but the  latter follows the  similar arguments as 
above. 

Remark 4.3 The central controller for this parametrization can be recovered by letting Q = 0. B y  
doing so, we have Vidyasagar7s Theorem [39] as follows: 

Suppose that system G, is locally asymptotically stabilizable and locally weakly detectable. If 
Co  function F : Rn-+RP is such that x = f ( x ,  F ( x ) )  is locally asymptotically stable at 0, and C o  
function fo : Rn x Rq x RP-+Rn is chosen as i n  the definition 4.3, then the controller u = Ir'y given 
by  Ii': 

locally asymptotically stabilizing the feedback system at 0 E Rn x Rn. 

4.2 Global Controller Parametrization 

In this subsection, we generalize the  local result i n  the previous subsection t o  get a global charac- 
terization. However, the  conditions i n  general are very restrictive. T h e  system considered is t h e  
same i n  (32) .  

where x E Rn is the  state vector, u E R h n d  y E Rq are the input and output vectors, respectively. 
f ,  h E C O ,  f (0 ,O)  = 0 ,  h ( 0 )  = 0. Clearly, the  origin 0 is an equilibrium o f  the  system with u = 0. 
It is assumed that  for all u E L& [0, m) ,  x ( t )  is defined for all initial state x ( 0 )  E E n  and (almost)  
all t E R+. W e  first have the  following technical definition due t o  Sontag [29]. 

Definition 4.4 Consider system k = f ( x ,  u ) .  It is input-to-state ( I /S)  stable i f  there exist func- 
tions ,8 of class ICL and y of class IC such that for each essentially bounded measurable control u ( , )  
and each initial state x (0 ) ,  the solution x ( t )  exists for each t 2 0; and furthermore, it satisfies 

Ilx(t>ll 5 P(llx(o>ll + r(llull,> (40)  

Definition 4.5 The class SPI I s  of nonlinear systems is defined such that each system in  SPI I s  
has a realization like (33) and is I /S  stable. 

T h e  following definition is due t o  Vidyasagar [39]. 

Definition 4.6 System G, (39) is said to be globally weakly detectable, i f  there are a C 0  mapping 
f ,  : Rn x Rq x RP-+Rn with fo(O, 0,O) = 0,  a C 1  positive definite function W : Rn x Rn-+R+, and 
functions 41, 42, 43 of class K ,  such that 

for all u E RP and x ,  2 E Rn. 



By Lyapunov Theorem, the above definition of detectability implies that there is a function Po 
of class K L  such that the error state e := 5 - x satisfies 

for all t E W+, x E Rn, and u E RP. Therefore, system k = fo(5 ,  h(x, u), u) is an observer for system 
G. 

Motivated by the construction of the stabilizing controller parametrization in the last subsection, 
we have the following result regarding the parametrization of a class of stabilizing controllers. 

Theorem 4.4 Suppose the system G, (39) is globally stabilizable and globally weakly detectable. 
Let the function f o  : Rn x Rq x RP+Rn be chosen as in the definition 4.6. If in addition, there 
are a C 0  function F : Rn x Rm+RP for some integer m > 0 such that i = f (x, F (x  + v ,  w)) with 

input [ : ] is  I t a b l e  and a C O  function H : Wn x Wq+R1 for some integer 1 > 0 such that 

1 1  H(xl ,  h(x2))11 I ~ ~ ( 1 1 ~ ~  - x211) for some function ~h of class K and for all xl, x2 E Rn. Then the 
controller parametrized as u = .Fl(Mg, Q ) y  with M, given by 

for all Q E SPI I s  also globally asymptotically stabilizes system G, around 0. 

Remark 4.5 The central controller can be recovered by letting Q = 0. This theorem is reduced to 
the following statement about global stabilizability due to [33] (see also [18, 361). 

Suppose the system G, is globally asymptotically stabilizable and globally weakly detectable. Let 
the function fo : Rn x Rq x WP+Rn be chosen as in  the definition 4.6. If i n  addition, A C o  function 
F : Rn-+RP is such that i = f(x,  F(x f v)) with input v is I/S stable, then the controller u = Ir'y 
given by 

globally asymptotically stabilizes the feedback: system at 0 E Rn  x Rn. 

The above theorem is given in [22] in the case where the output y depends on both x and u, 
i.e., y = h(x, u). In the following, we just give a sketch of the proof for completeness, and mainly 
emphasize on the discussion about the restrictiveness of the conditions. 

Proof (Theorem 4.4: A Sketch) The proof basically follows Sontag7s arguments about global 
stability of cascade systems. Assume uo = Qyo for Q E SPI I s  with the following realization, 

The dynamics of the closed loop system is represented with the state x, = [eT tT xTIT (with 
e := 5 - x) as 



with u = F(x+e ,  c([, H(x+e,  h(x)))), where x, 2 ,  < are states of plant, observer, and the parameter, 
respectively. 

By the detectability and the choice of f,, there is a function Po of class KL such that 

for all t E R+, e(0) E Rn, x E Rn, and u E RP. 

Consider the [-system, the I/S stability of j = a([, yo) with input yo = H (x + e, h(x)) and the 
growth condition on H imply that there exist a function P, of class KL and a function yh of class 
K such that 

Ilt(t>ll 5 P~(ll[(~)ll 7 t, + 'Yh(llellm> 

for all t E iR+, x(0) E iRn, and essentially bounded function e : R+-+Rn. 

Now according to  Sontag7s argument in 131, 181, define 

Then it  is easy t o  verify that PI is also of class KL. Define 2 = [ ; ] , from (44) and (451, it folows 

Finally, consider the x-system H = f (x, F(x  + e, uo)) with uo = c([, H(x  + e ,  h(x))). The I/S 
t- 

stability assumption about the system with as the input, the continuity of function c, and 

the growth condition on H together imply that there exist a function P, of class K,C and a function 
y, of class K such that 

Now use the similar argument as the above, we can conclude that there is a function P of class 
KL such that 

( = [ : ] ). This concludes the globally asymptotic stability of the closed loop system. 

Further Remarks 

In general, the conditions in Theorem 4.4, i.e. the I/S stability condition and the growth rate 
condition on H ,  are restrictive. In the following, we will examine some examples that satisfy the 
conditions. 



Remark 4.6 A class of smoothly stabilizable (input-afine) nonlinear systems satisfy the I/S sta- 
bility conditions i n  Theorem 4.4 (33, 18, 221. More generally, let's consider a globally (smoothly) 
stabilizable nonlinear system, 2 = f ( x , u )  with f smooth. B y  Sontag's arguments [31, 181, there 
exists a feedback law u = FI lo (x )  and a smooth function G : Rn--+Rf with 0 < G ( x )  < C, < oo 
for all x E Rn such that the following system 

with input v is I /S  stable, i.e., there are a function P of class KC and a function yo of class K such 
that 

for all x ( 0 )  E Rn and t E R f .  In addition, assume FIlo is a globally Lipschitz function with 
constant C > 0 ,  and G ( x )  2 C, with some C, > 0 for all x E Rn. Define function F : Rn x R p t R p  
as F ( x ,  w )  = F I l o ( x )  t w .  Therefore, for x ( t )  which satisfies 

we  have 

with y ( s )  := y o ( M s )  being of class IC, which implies that the system 2 = f ( x ,  F ( X  + v ,  w ) )  with 
r ?  C, 

input  1 6 J is  I/S stable. 

Remark 4.7 A class of feedback linearizable input-afine nonlinear systems satisfy the I /S  stability 
conditions i n  Theorem 4.4 [Id]. Suppose 2 = f ( x )  + g ( x ) u  with x E Rn, u E R and f ,g  smooth is  
exactly linearizable, i.e., there is a coordinate transformation z = @ ( x )  (in fact, = L;-'(x)) with 

: Rn--+Rn being a difleomorphism such that the system under the new coordinate 2 = f ( z )  t j ( z ) u  
is as follows 

T h e n  by [Id, Theorem 11, there is a control law u = p ( z ) ,  such that i = f ( z )  + g ( z ) p ( z )  is globally 

asymptotically stable and i n  addition, i = f ( z )  + i j ( z ) (p ( z  + d )  + w )  with input [ : ] is I /S  stable, 

i.e., there are a function p of class KL and a function yo of class K such that 



for all z (0)  E IFPn and t E R f .  Now return to the original system, define F : Rn x Rp+IWp (p = 1) 
as  F ( x ,  w )  = p(Q!(x ) )  + w; the original system becomes 2 = f ( x )  + g ( x ) F ( x  + v, w )  and under the 
transformation z ( t )  = @ ( x ( t ) )  it becomes 

A s  : IRn+Rn is still a difleomorphism, it is continuous, therefore there is a function rc of class 
IC such that 11Q!-l(z)11 2 ~ ( I I z I I ) .  NOW we additionally assume Q! : Rn+Rn is globally Lipschitz with 
constant C > 0, then 

where P,(s, t )  = rc(2p(Cs, t ) )  is again of class KL and y,(s) = r ( 2 y ( C s  + s ) )  is of class K .  

Remark 4.8 If the output function h is globally Lipschitz, then an H ,  which satisfies the re- 
quirement in the above theorem, can be taken as H ( x ,  y)  = h ( x )  - y. In fact, 1 1  H ( x l ,  h(x2))11 = 
I lh(xl)  - h(x2)11 5 C llxl. - x211 for some C > 0,  and rch(s) = C s  is of class K .  

From the above discussions, we see that the I/S stability conditions and growth conditions 
on H for the classes of systems we examined are reduced to  the uniform continuity (or globally 
Lipschitz) conditions for some functions (as a reviewer pointed out). The global Lipschitz condition 
is a restrictive one. 

5 Concluding Remarks 

We have proposed a state-space approach to the parametrization of stabilizing controllers for time- 
invariant nonlinear systems without adopting coprime factorization technique. The central idea here 
is the decomposition of output feedback problem into simpler state feedback and state estimation 
problems. The stabilizing controllers are represented as fractional transformations of some stable 
parameters. Both local and global parametrizations are derived for the general nonlinear systems. 
These problems are treated under the assumption that the controllers have the same dimensions 
as the plants and have separation structures, and the observers are assumed to exist. However, in 
the general case, especially in the global case, the constructions of the observers are not provided. 
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